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An introduction to the inside-out technique

m Inside-out objects first presented by Dutch Perl hacker Abigail in 2002
— Spring 2002 — First mention at Amsterdam.pm,
— June 28, 2002 — YAPC NA "Two alternative ways of doing OO"
— July 1, 2002 — First mention on Perlmonks

m Gained recent attention (notoriety?) as a recommended best practice with the
publication of Damian Conway's Perl Best Practices

m Offer some interesting advantages... but at the cost of substantial complexity
— Big question: Do the benefits outweight the complexity?

= Agenda for this tutorial:
— Teach the basics
— Describe the complexity
— Let you decide
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Eversion 101 Lesson Plan: Five C's

001 Concepts

010 Choices
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001 Concepts
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Three ideas at the core of this tutorial

1. Encapsulation using lexical closure
2. Objects as indices versus objects as containers

3. Memory addresses as unique identifiers

TIMTOWTDI: Everything else is combinations and variations
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'‘Classic' Perl objects reference a data structure of properties

Hash-based object

$obj = bless {}, ""Some::Class";

Object 1
‘ I name
>
rank

serial_no

Array-based object

$obj = bless [], "Some::Class';

Object 2
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Complaint #1 for classic objects: No enforced encapsulation

m Frequent confusion describing the encapsulation problem
— Not about hiding data, algorithms or implementation choices
— It is about minimizing coupling with the code that uses the object

m The real question: Culture versus control?
— Usually a matter of strong personal opinions
— Advisory encapsulation: 'double yellow lines'
— Enforced encapsulation: 'Jersey barriers'

= The underlying challenge: Tight coupling of superclasses and subclasses
— Type of reference for data storage, e.g. hashes, array, scalars, etc.
— Names of keys for hashes
— 'Strong' encapsulation isn't even an option
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Complaint #2: Hash key typos (and proliferating accessors)

= A typo in the name of a property creates a bug, not an error!
— Code runs fine but results aren't as expected
$self->{naem} = "James";

print $self->{name}; # What happened?

m Accessors to the rescue (?!)
— Runtime error where the typo occurs
— Every property access gains function call overhead

$self->naem(*James"); # Runtime error here
print $self->name();

m My view: accessor proliferation for typo safety is probably not best practice

— Private need for typo safety shouldn't drive public interface design
— Couples implementation and interface

1 Locked hashes are another solution as of Perl 5.8
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Eureka! We can enforce encapsulation with lexical closure

m Class properties always did this
package Some::Class;

my $counter;

sub i1nc_counter { |
my $self = shift; '
$counter++;

}

= Damian Conway's flyweight pattern?
my @objects;

sub new { ;
my $class = shift; i
my $id = scalar @objects; ;
$objects[$i1d] = {}; |
return bless \$id, $class; |

}

sub get_name {

my $self = shift;

return $objects[$Sself]{name};
}

Some::Class

» my $counter

inc_counter

1
® » my @objects
new
0 1 ? 2 3
name
get_name rank
serial_no

N
N

2 A brief version of this was introduced in Advanced Perl Programming, 15 edition as ObjectTemplate
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'Inside-Out' objects use an index into lexicals for each property

Some::Class

—pmy Yoname

Object 1

Object 2

new Object 3

Object 4

———p-my %rank

Object 1

get_name Object 2

Object 3

Object 4

——p my %serial_no

do_stuff ® Object 1

Object 2

Object 3

Object 4

Image source: Michal Kosmulski

o

Lexical properties
give compile-time
typo checking
under Strict!

# Correct:
$name{ $$self };

# Compiler error:
$naem{ $$self };
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Review: 'Classic' versus 'Inside-Out’

m Classic: Objects as containers
— Object is a reference to a data structure of properties
— No enforced encapsulation
— Hash-key typo problem

Object 1
name
serial_no

m Inside-Out: Objects as indices
— Object is an index into a lexical data structure for each property
— Enforced encapsulation using lexical closure
— Compile-time typo protection my %name

Object 2 Object 1

Object2 | —W Object?2
Index ]
Object 3

Object 4

Image source: Michal Kosmulski
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010 Choices
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What data structure to use for inside-out properties?

Object 2

o 2

12
Copyright © 2006 David A. Golden



What data structure to use for inside-out properties?

my %name

Object 1
Object 2 / Object 2
Object 2 ] Obiect 3
“ E H > Index N !
Object 4
my @name
How to decide? 0 \Tl 2 3

= Array
— Fast access
— Index limited to sequential integers
— Needs DESTROY to recycle indices to prevent runaway growth of property arrays

= Hash
— Slow(er) access
— Any string as index
— Uses much more memory (particularly if keys are long)
— Needs DESTROY to free property memory to avoid leakage
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What index? (And stored how?)

m  Sequential number, stored in a blessed scalar
— Tight coupling — subclasses must also use a blessed scalar
— Subclass must use an index provided by the superclass

— Unless made read-only, objects can masquerade as other objects, whether references
to them exist or not!

$$self = $$self + 1
my @name

i 0 1 2 3
Object 1 /L
.

= A unique, hard-to-guess number, stored in a blessed scalar (e.g. with Data: -UUID)

— Again, tight coupling — subclasses must also use a blessed scalar
my %rank

Object 2 /J 8c2d4691
. > 8c2d4691—|
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An alternative: use the memory address as a unique identifier

= Unique and consistent for the life of the object
— Except under threads (needs a CLONE method)

my %serial_no

Object 3 0x224e40 J 0x224e40

| 2

= Several ways to get the memory address; only refaddr()is safe3
$property{ refaddr $self }

m  Otherwise, overloading of stringification or numification can give unexpected results
$property{ "$self" }
$property{ $self } # like "$self”
$property{ O0+$self }

3 Available in Scalar: :Util
15
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Using the memory address directly allows 'black-box' inheritance

= When used directly as refaddr $selT, the type of blessed reference no longer matters

— Subclasses don't need to know or care what the superclass is using as a data type
— Downside is slight overhead of refaddr $selfT for each access

= Black-box inheritance* — using a superclass object as the reference to bless
— a.k.a. 'foreign inheritance' or '‘opaque inheritance’
— An alternative to facade/delegator/adaptor patterns and some uses of tied variables
— Superclass doesn't even have to be an inside-out object

use base "Super::Class”;

sub new {
my $class = shift;
my $self = Super::Class->new( @_ );
bless $self, $class;
return $self;

}
m There is still a problem for multiple inheritance of different base object types

4 Thanks to Boston.pm for name brainstorming 16
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These choices give four types of inside-out objects

1.

Array-based properties, with sequential ID's stored in a blessed scalar
— Fast and uses less memory

— Insecure unless index is made read-only

— Requires index recycling

— Subclasses must also use a blessed scalar — no black-box inheritance

Hash-based properties, with a unique, hard-to-guess number stored in a blessed scalar
— Slow and uses more memory

— Robust, even under threads

— Subclasses must also use a blessed scalar — no black-box inheritance

Hash-based properties, with the memory address stored in a blessed scalar
— Subclasses must also use a blessed scalar — no black-box inheritance
— Combines the worst of (2) and (4) for a slight speed increase

Hash-based properties, with the memory address used directly
— Slow and uses more memory

— Black-box inheritance possible

— Not thread-safe unless using a CLONE method
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011 Code
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File::Marker: a simple inside-out objects with black-box inheritance

Key Features

m Useable directly as a filehandle (10: : File) without tying

$fm = File::Marker->new( $filename );
$line = <$fm>;

m  Set named markers for the current location in an opened file
$fm->set_marker( $mark name );

= Jump to the location indicated by a marker
$fm->goto_marker( $mark_name );

m Let users jump back to the last jump point with a special key-word
$fm->goto_marker( "LAST" );

m Clear markers when opening a file
$tm->open( $another_Tile ); # clear all markers
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File::Marker constructor

use base "10::File";

use Scalar::util gw( refaddr ); Full version of File:Marker
available on CPAN

my %MARKS = ()’ » Uses Strictand warnings
= Argument validation

= Error handling

sub new { e ytens
_ i} _ = Extensive test coverage
my $class = shift; » Thread safety

my $self = 10::File->new();
bless $self, $class;
$self->open( @_ ) 1if @ ;
return $self;

sub open {
my $self = shift;
SMARKS{ refaddr $self } = {};
$sel F->SUPER: zopen( @  );
SMARKS{ refaddr $self }{ "LAST" } = $self->getpos;
return 1;

} 20
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File::

sub

sub

sub

Marker destructor and methods

DESTROY {
my $self = shift;
delete $MARKS{ refaddr $self };

set_marker {

my ($self, $mark) = @ ;

SMARKS{ refaddr $self }{ $mark } = $self->getpos;
return 1;

goto_marker {

my ($self, $mark) = @ ;

my $old position = $self->getpos; # save for LAST
$self->setpos( $MARKS{ refaddr $self }{ $mark } );
SMARKS{ refaddr $self }{ "LAST" } = $old position;
return 1;

21
Copyright © 2006 David A. Golden



Seeing it in action

file_ marker example.pl

textfile.txt

use strict;
use warnings;
use Fi1le::Marker;

my $fm = File: :Marker->new(
"textfile. txt"
E

print scalar <$fm>, "--\n"';
$tm->set _marker('line2');
print <$fm>, "--\n";
$tm->goto _marker(*'line2™);

print scalar <$fm>;

]

1S
1S
1S
1S

line one
line two
line three
line four

Output

this
this
this
this

this

line one
line two
line three
line four

line two

22
Copyright © 2006 David A. Golden



Complexity
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Five pitfalls

1. Not using DESTROY to free memory or reclaim indices

2. Serialization — without special precautions

3. Not using refaddr () to get a memory address

4. Not providing CLONE for thread-safety

5. Using a CPAN implementation that gets these wrong

~

Inherent to all
inside-out objects

Only if using
memory addresses
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Serialization requires extra work

m Programmers often assume an object reference is a data structure
Dump( $object ); # implicitly breaks encapsulation

s OO purists might say that objects should provide a dump method
$object->dump(); # 00-style

= But, what if objects are part of a larger non-OO data structure?
@list = ( $objl, $obj2, $obj3 );
freeze( \@list ); # What now?

= Fortunately, Storab e provides hooks for objects to control their serialization
STORABLE_ freeze();
STORABLE_thaw();
STORABLE_attach(); # for singletons

s Of Data: :Dumper and clones, only Data: :Dump: - Streamer provides the right

kind of hooks (but doesn't easily support singleton objects... yet)
25
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Use CLONE for thread-safe refaddr indices

m Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists

— Called from the context of the new thread

— Works for Win32 pseudo-forks (but not for Perl 5.6)
m Use a registry with weak references to track and remap old indices
— weaken provided by the XS version of Scalar::Util

Original Thread
%REGISTRY

0x224e40 o |
0x224F48 @ ---n-.
0x224184 P
0x224d5c PR
%name

0x224e40 Larry
0x224148 Damian
0x224184 Mark
0x224d5c | Abigail

|:| 0x224e40
> [__] ox224f4s
|:| 0x224F84
[ oxe24dsc

New Thread
AGISTRY
-
........ - 0x1830864
—( | 0x224e40 ) o >|:|
0x224F48 -] B |:| 0x1830884
0x224F84 PO > |:| 0x1830894
0x224d5¢ P - |:|0x1830918
%name
= T Use the reqistry ke
»{ 0x224e40 Larry D " 0 locate o% da)t{[a y
¥
0x224F€48 Damian
0x224F84 Mark
0x224d5c | Abigail
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Use CLONE for thread-safe refaddr indices

m Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists

— Called from the context of the new thread

— Works for Win32 pseudo-forks (but not for Perl 5.6)
m Use a registry with weak references to track and remap old indices
— weaken provided by the XS version of Scalar::Util

Original Thread
%REGISTRY

0x224e40 o |
0x224F48 @ ---n-.
0x224184 P
0x224d5c P
%oname

0x224e40 Larry
0x224f48 | Damian
0x224184 Mark
0x224d5c | Abigail

[:::::] 0x224e40
[:::::] 0x224F48
—» ] oxe24fsa
[ oxe24dsc

New Thread

%REGISTRY
0x224€40 .
0x224F48 o
0x224F84 CHE—
95224G§E PR

%name
{Femgo) ety P
0x224f48 | Damian
0x224184 Mark
0x224d5c | Abigail
0x1830864 Larry

L
=

0x1830864

0x1830884

> I:|Ox1830894
> |:|0x1830918

= Use the registry key
to locate old data

= Copy data to new
refaddr key

= Delete the old key
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Use CLONE for thread-safe refaddr indices

m Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists

— Called from the context of the new thread

— Works for Win32 pseudo-forks (but not for Perl 5.6)
m Use a registry with weak references to track and remap old indices
— weaken provided by the XS version of Scalar::Util

Original Thread
%REGISTRY

0x224e40 o |
0x224F48 @ ---n-.
0x224184 P
0x224d5c PR
%name

0x224e40 Larry
0x224148 Damian
0x224184 Mark
0x224d5c | Abigail

[:::::] 0x224e40
> [__] ox224f4s
[:::::] 0x224F84
[ oxe24dsc

New Thread

%REGISTRY
qoesoneay e
0x224F48 @
0x224184 P
0x224d5c PR
%name
OKRARION /DY
0x224f48 | Damian
0x224184 Mark
0x224d5c | Abigail
0x1830864| Larry

~» [ {ox1830864

-
o
-

[:::::]Ox1830884
[:::::]Ox1830894
[:::::]Ox1830918

= Use the registry key
to locate old data

= Copy data to new
refaddr key

= Delete the old key

» Update the registry
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CPAN
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Two CPAN modules to consider and several to (probably) avoid

v = Object::InsideOut

— Currently the most flexible, robust implementation of inside-out objects
— But, black-box inheritance handled via delegation (including multiple inheritance)

v ®m Class::InsideOut (disclaimer: | wrote this one)

— A safe, simple, minimalist approach

— Manages inside-out complexity but leaves all other details to the user
— Supports black-box inheritance directly

2 = Class::Std

— Rich support for class hierarchies and overloading

— But, not yet thread-safe

— Hash-based with memory-address, but not in a way that allows black-box inheritance
X = All of these have flaws or limitations:

Base: :Class Lexical - :Attributes
Class: :BuildMethods Object::LocalVars

Class: :MakeMethods: :Templates: : InsideOut

1? = ... but coming "soon" in Perl 5.10: Hash: :Util: :FieldHash
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Questions?
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Bonus Slides
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File::Marker with thread safety, part one

use
use

base "I10::File";
Scalar::Util gw( refaddr weaken );

my %MARKS = ();
my %REGISTRY = ();

sub

sub

new {

my $class = shift;

my $self = 10::File->new();
bless $self, $class;

weaken( $REGISTRY{ refaddr $self } = $self );

$self->open( @_ ) if @ ;
return $self;

DESTROY {

my $self = shift;

delete $MARKS{ refaddr $self };
delete $REGISTRY{ refaddr $self };
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File::Marker with thread safety, part two

sub CLONE {

for my $old _i1d ( keys %REGISTRY ) {

# look under old_id to find the new, cloned reference

my $object
my $new_id

$REGISTRY{ $old id };
refaddr $object;

# relocate data

$MARKS{ $new_id } = $MARKS{ $old id };

delete $MARKS{ $old id };

# update the weak reference to the new, cloned object

weaken ( $REGISTRY{ $new_id } = $object );

delete $REGISTRY{ $old_id };

}

return;
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Inside-out CPAN module comparison table

Module Storage Index CLONE? Serializes? Other Notes
Object::InsideOut Array or Array: Integers Yes Custom » black-box inheritance using
(1.27) Hash Hash: Cached dump() delegation pattern

refaddr $self Storable = Custom :attribute handling
hooks
= mod_perl safe
= Good thread support
Class::InsideOut Hash refaddr $self Yes Storable = Simple, minimalist approach
1.00 hooks
( ) = Supports direct black-box
inheritance
= mod_perl safe
Class::Std Hash refaddr $self No Storable = Custom :attribute handling;
(0.0.8) hooks with
Class::Std:: = mod_perl safe
Storable = No black-box inheritance

support

= Rich class hierarchy support
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Inside-out CPAN module comparison table (continued)

Module Storage Index CLONE? Serializes? Other Notes
Base::Class Hash of "$self" No Dumper to = Lexical storage in
(0.12) Hashes STDERR Base::Class
'Flyweight' onl
(Flyweight) y = Autogenerates all
No Storable properties/accessors via
support AUTOLOAD
Class::BuildMethods Hash of refaddr $self No Custom = Lexical storage in
(0.112) Hashes dump() Class::BuildMethods, not the
(‘'Flyweight") NG Storabl class that uses it; provides
0 Storable accessors for use in code
support
Class::MakeMethods | Hash "$self" No No = Part of a complex class

::Template::InsideOut
(1.01)

generator system, steep
learning curve
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Inside-out CPAN module comparison table (continued)

Module Storage Index CLONE? Serializes? Other Notes
Lexical::Attributes Hash refaddr $self No No = Source filters for Perl-6-like
(1.4) syntax
Object::LocalVvars Package refaddr $self Yes No = Custom :attribute handling
(0.16) global hash

= mod_perl safe

= Wraps methods to locally
alias $self and properties

= Highly experimental
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Some CPAN Modules which use the inside-out technique

s Data: :Postponed
— Delay the evaluation of expressions to allow post facto changes to input variables

m File::Marker (from this tutorial)
— Set and jump between named position markers on a filehandle

m List::Cycle
— Objects for cycling through a list of values

= Symbol::Glob
— Remove items from the symbol table, painlessly
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References for further study

= Books by Damian Conway
— Object Oriented Perl. Manning Publications. 2000
— Perl Best Practices. O'Reilly Media. 2005

= Perlmonks — see my scratchpad for a full list: <http://perlmonks.org/index.pl?node_id=360998>

— Abigail-1l. "Re: Where/When is OO useful?". July 1, 2002
<http://perimonks.org/index.pl?node_id=178518>

— Abigail-1l. "Re: Tutorial: Introduction to Object-Oriented Programming". December 11, 2002
<http://perimonks.org/index.pl?node_id=219131>

— demerphg. "Yet Another Perl Object Model (Inside Out Objects)". December 14, 2002
<http://perimonks.org/index.pl?node_id=219924>

— xdg. "Threads and fork and CLONE, oh my!". August 11, 2005
<http://perlmonks.org/index.pl?node_id=483162>

— jdhedden. "Anti-inside-out-object-ism". December 9, 2005
<http://perimonks.org/index.pl?node_id=515650>

» Perl documentation (aka "perldoc") — also at <http://perldoc.perl.org>
— perlmod
— perlfork
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