Eversion 101
An Introduction to Inside-Out Objects

David Golden
dagolden@cpan.org

June 26, 2006
YAPC::NA

Image source: Michal Kosmulski Copyright © 2006 David A. Golden

An introduction to the inside-out technique

m Inside-out objects first presented by Dutch Perl hacker Abigail in 2002
— Spring 2002 — First mention at Amsterdam.pm,
— June 28, 2002 — YAPC NA "Two alternative ways of doing OO"
— July 1, 2002 — First mention on Perlmonks

m Gained recent attention (notoriety?) as a recommended best practice with the
publication of Damian Conway's Perl Best Practices

m Offer some interesting advantages... but at the cost of substantial complexity
— Big question: Do the benefits outweight the complexity?

= Agenda for this tutorial:
— Teach the basics
— Describe the complexity
— Let you decide

1
Copyright © 2006 David A. Golden

Eversion 101 Lesson Plan: Five C's

001 Concepts

010 Choices

sk

Image sources: Michal Kosmulski,Bill Odom . Golden

001 Concepts

Image source: Michal Kosmulski Copyright © 2006 David A. Golden

Three ideas at the core of this tutorial

1. Encapsulation using lexical closure
2. Objects as indices versus objects as containers

3. Memory addresses as unique identifiers

TIMTOWTDI: Everything else is combinations and variations

4
Copyright © 2006 David A. Golden

'‘Classic' Perl objects reference a data structure of properties

Hash-based object

$obj = bless {}, ""Some::Class";

Object 1
‘ I name
>
rank

serial_no

Array-based object

$obj = bless [], "Some::Class';

Object 2

5
Image source: Michal Kosmulski Copyright © 2006 David A. Golden

Complaint #1 for classic objects: No enforced encapsulation

m Frequent confusion describing the encapsulation problem
— Not about hiding data, algorithms or implementation choices
— It is about minimizing coupling with the code that uses the object

m The real question: Culture versus control?
— Usually a matter of strong personal opinions
— Advisory encapsulation: 'double yellow lines'
— Enforced encapsulation: 'Jersey barriers'

= The underlying challenge: Tight coupling of superclasses and subclasses
— Type of reference for data storage, e.g. hashes, array, scalars, etc.
— Names of keys for hashes
— 'Strong' encapsulation isn't even an option

6
Copyright © 2006 David A. Golden

Complaint #2: Hash key typos (and proliferating accessors)

= A typo in the name of a property creates a bug, not an error!
— Code runs fine but results aren't as expected
$self->{naem} = "James";

print $self->{name}; # What happened?

m Accessors to the rescue (?!)
— Runtime error where the typo occurs
— Every property access gains function call overhead

$self->naem(*James"); # Runtime error here
print $self->name();

m My view: accessor proliferation for typo safety is probably not best practice

— Private need for typo safety shouldn't drive public interface design
— Couples implementation and interface

1 Locked hashes are another solution as of Perl 5.8

7
Copyright © 2006 David A. Golden

Eureka! We can enforce encapsulation with lexical closure

m Class properties always did this
package Some::Class;

my $counter;

sub i1nc_counter { |
my $self = shift; '
$counter++;

}

= Damian Conway's flyweight pattern?
my @objects;

sub new { ;
my $class = shift; i
my $id = scalar @objects; ;
$objects[$i1d] = {}; |
return bless \$id, $class; |

}

sub get_name {

my $self = shift;

return $objects[$Sself]{name};
}

Some::Class

» my $counter

inc_counter

1
® » my @objects
new
0 1 ? 2 3
name
get_name rank
serial_no

N
N

2 A brief version of this was introduced in Advanced Perl Programming, 15 edition as ObjectTemplate

Copyright © 2006 David A. Golden

'Inside-Out' objects use an index into lexicals for each property

Some::Class

—pmy Yoname

Object 1

Object 2

new Object 3

Object 4

———p-my %rank

Object 1

get_name Object 2

Object 3

Object 4

——p my %serial_no

do_stuff ® Object 1

Object 2

Object 3

Object 4

Image source: Michal Kosmulski

o

Lexical properties
give compile-time
typo checking
under Strict!

Correct:
$name{ $$self };

Compiler error:
$naem{ $$self };

Copyright © 2006 David A. Golden

9

Review: 'Classic' versus 'Inside-Out’

m Classic: Objects as containers
— Object is a reference to a data structure of properties
— No enforced encapsulation
— Hash-key typo problem

Object 1
name
serial_no

m Inside-Out: Objects as indices
— Object is an index into a lexical data structure for each property
— Enforced encapsulation using lexical closure
— Compile-time typo protection my %name

Object 2 Object 1

Object2 | —W Object?2
Index]
Object 3

Object 4

Image source: Michal Kosmulski

10
Copyright © 2006 David A. Golden

010 Choices

Image source: Michal Kosmulski Copyright © 2006 David A. Golden

What data structure to use for inside-out properties?

Object 2

o 2

12
Copyright © 2006 David A. Golden

What data structure to use for inside-out properties?

my %name

Object 1
Object 2 / Object 2
Object 2] Obiect 3
“ E H > Index N !
Object 4
my @name
How to decide? 0 \Tl 2 3

= Array
— Fast access
— Index limited to sequential integers
— Needs DESTROY to recycle indices to prevent runaway growth of property arrays

= Hash
— Slow(er) access
— Any string as index
— Uses much more memory (particularly if keys are long)
— Needs DESTROY to free property memory to avoid leakage

13
Copyright © 2006 David A. Golden

What index? (And stored how?)

m Sequential number, stored in a blessed scalar
— Tight coupling — subclasses must also use a blessed scalar
— Subclass must use an index provided by the superclass

— Unless made read-only, objects can masquerade as other objects, whether references
to them exist or not!

$$self = $$self + 1
my @name

i 0 1 2 3
Object 1 /L
.

= A unique, hard-to-guess number, stored in a blessed scalar (e.g. with Data: -UUID)

— Again, tight coupling — subclasses must also use a blessed scalar
my %rank

Object 2 /J 8c2d4691
. > 8c2d4691—|

14
Copyright © 2006 David A. Golden

An alternative: use the memory address as a unique identifier

= Unique and consistent for the life of the object
— Except under threads (needs a CLONE method)

my %serial_no

Object 3 0x224e40 J 0x224e40

| 2

= Several ways to get the memory address; only refaddr()is safe3
$property{ refaddr $self }

m Otherwise, overloading of stringification or numification can give unexpected results
$property{ "$self" }
$property{ $self } # like "$self”
$property{ O0+$self }

3 Available in Scalar: :Util
15

Copyright © 2006 David A. Golden

Using the memory address directly allows 'black-box' inheritance

= When used directly as refaddr $selT, the type of blessed reference no longer matters

— Subclasses don't need to know or care what the superclass is using as a data type
— Downside is slight overhead of refaddr $selfT for each access

= Black-box inheritance* — using a superclass object as the reference to bless
— a.k.a. 'foreign inheritance' or '‘opaque inheritance’
— An alternative to facade/delegator/adaptor patterns and some uses of tied variables
— Superclass doesn't even have to be an inside-out object

use base "Super::Class”;

sub new {
my $class = shift;
my $self = Super::Class->new(@_);
bless $self, $class;
return $self;

}
m There is still a problem for multiple inheritance of different base object types

4 Thanks to Boston.pm for name brainstorming 16
Copyright © 2006 David A. Golden

These choices give four types of inside-out objects

1.

Array-based properties, with sequential ID's stored in a blessed scalar
— Fast and uses less memory

— Insecure unless index is made read-only

— Requires index recycling

— Subclasses must also use a blessed scalar — no black-box inheritance

Hash-based properties, with a unique, hard-to-guess number stored in a blessed scalar
— Slow and uses more memory

— Robust, even under threads

— Subclasses must also use a blessed scalar — no black-box inheritance

Hash-based properties, with the memory address stored in a blessed scalar
— Subclasses must also use a blessed scalar — no black-box inheritance
— Combines the worst of (2) and (4) for a slight speed increase

Hash-based properties, with the memory address used directly
— Slow and uses more memory

— Black-box inheritance possible

— Not thread-safe unless using a CLONE method

17
Copyright © 2006 David A. Golden

011 Code

Image source: Michal Kosmulski Copyright © 2006 David A. Golden

File::Marker: a simple inside-out objects with black-box inheritance

Key Features

m Useable directly as a filehandle (10: : File) without tying

$fm = File::Marker->new($filename);
$line = <$fm>;

m Set named markers for the current location in an opened file
$fm->set_marker($mark name);

= Jump to the location indicated by a marker
$fm->goto_marker($mark_name);

m Let users jump back to the last jump point with a special key-word
$fm->goto_marker("LAST");

m Clear markers when opening a file
$tm->open($another_Tile); # clear all markers

19
Copyright © 2006 David A. Golden

File::Marker constructor

use base "10::File";

use Scalar::util gw(refaddr); Full version of File:Marker
available on CPAN

my %MARKS = ()’ » Uses Strictand warnings
= Argument validation

= Error handling

sub new { e ytens
_ i} _ = Extensive test coverage
my $class = shift; » Thread safety

my $self = 10::File->new();
bless $self, $class;
$self->open(@_) 1if @ ;
return $self;

sub open {
my $self = shift;
SMARKS{ refaddr $self } = {};
$sel F->SUPER: zopen(@);
SMARKS{ refaddr $self }{ "LAST" } = $self->getpos;
return 1;

} 20

Copyright © 2006 David A. Golden

File::

sub

sub

sub

Marker destructor and methods

DESTROY {
my $self = shift;
delete $MARKS{ refaddr $self };

set_marker {

my ($self, $mark) = @ ;

SMARKS{ refaddr $self }{ $mark } = $self->getpos;
return 1;

goto_marker {

my ($self, $mark) = @ ;

my $old position = $self->getpos; # save for LAST
$self->setpos($MARKS{ refaddr $self }{ $mark });
SMARKS{ refaddr $self }{ "LAST" } = $old position;
return 1;

21
Copyright © 2006 David A. Golden

Seeing it in action

file_ marker example.pl

textfile.txt

use strict;
use warnings;
use Fi1le::Marker;

my $fm = File: :Marker->new(
"textfile. txt"
E

print scalar <$fm>, "--\n"';
$tm->set _marker('line2');
print <$fm>, "--\n";
$tm->goto _marker(*'line2™);

print scalar <$fm>;

]

1S
1S
1S
1S

line one
line two
line three
line four

Output

this
this
this
this

this

line one
line two
line three
line four

line two

22
Copyright © 2006 David A. Golden

Complexity

Image source: Michal Kosmulski Copyright © 2006 David A. Golden

Five pitfalls

1. Not using DESTROY to free memory or reclaim indices

2. Serialization — without special precautions

3. Not using refaddr () to get a memory address

4. Not providing CLONE for thread-safety

5. Using a CPAN implementation that gets these wrong

~

Inherent to all
inside-out objects

Only if using
memory addresses

24
Copyright © 2006 David A. Golden

Serialization requires extra work

m Programmers often assume an object reference is a data structure
Dump($object); # implicitly breaks encapsulation

s OO purists might say that objects should provide a dump method
$object->dump(); # 00-style

= But, what if objects are part of a larger non-OO data structure?
@list = ($objl, $obj2, $obj3);
freeze(\@list); # What now?

= Fortunately, Storab e provides hooks for objects to control their serialization
STORABLE_ freeze();
STORABLE_thaw();
STORABLE_attach(); # for singletons

s Of Data: :Dumper and clones, only Data: :Dump: - Streamer provides the right

kind of hooks (but doesn't easily support singleton objects... yet)
25

Copyright © 2006 David A. Golden

Use CLONE for thread-safe refaddr indices

m Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists

— Called from the context of the new thread

— Works for Win32 pseudo-forks (but not for Perl 5.6)
m Use a registry with weak references to track and remap old indices
— weaken provided by the XS version of Scalar::Util

Original Thread
%REGISTRY

0x224e40 o |
0x224F48 @ ---n-.
0x224184 P
0x224d5c PR
%name

0x224e40 Larry
0x224148 Damian
0x224184 Mark
0x224d5c | Abigail

|:| 0x224e40
> [__] ox224f4s
|:| 0x224F84
[oxe24dsc

New Thread
AGISTRY
-
........ - 0x1830864
—(| 0x224e40) o >|:|
0x224F48 -] B |:| 0x1830884
0x224F84 PO > |:| 0x1830894
0x224d5¢ P - |:|0x1830918
%name
= T Use the reqistry ke
»{ 0x224e40 Larry D " 0 locate o% da)t{[a y
¥
0x224F€48 Damian
0x224F84 Mark
0x224d5c | Abigail

26
Copyright © 2006 David A. Golden

Use CLONE for thread-safe refaddr indices

m Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists

— Called from the context of the new thread

— Works for Win32 pseudo-forks (but not for Perl 5.6)
m Use a registry with weak references to track and remap old indices
— weaken provided by the XS version of Scalar::Util

Original Thread
%REGISTRY

0x224e40 o |
0x224F48 @ ---n-.
0x224184 P
0x224d5c P
%oname

0x224e40 Larry
0x224f48 | Damian
0x224184 Mark
0x224d5c | Abigail

[:::::] 0x224e40
[:::::] 0x224F48
—»] oxe24fsa
[oxe24dsc

New Thread

%REGISTRY
0x224€40 .
0x224F48 o
0x224F84 CHE—
95224G§E PR

%name
{Femgo) ety P
0x224f48 | Damian
0x224184 Mark
0x224d5c | Abigail
0x1830864 Larry

L
=

0x1830864

0x1830884

> I:|Ox1830894
> |:|0x1830918

= Use the registry key
to locate old data

= Copy data to new
refaddr key

= Delete the old key

27
Copyright © 2006 David A. Golden

Use CLONE for thread-safe refaddr indices

m Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists

— Called from the context of the new thread

— Works for Win32 pseudo-forks (but not for Perl 5.6)
m Use a registry with weak references to track and remap old indices
— weaken provided by the XS version of Scalar::Util

Original Thread
%REGISTRY

0x224e40 o |
0x224F48 @ ---n-.
0x224184 P
0x224d5c PR
%name

0x224e40 Larry
0x224148 Damian
0x224184 Mark
0x224d5c | Abigail

[:::::] 0x224e40
> [__] ox224f4s
[:::::] 0x224F84
[oxe24dsc

New Thread

%REGISTRY
qoesoneay e
0x224F48 @
0x224184 P
0x224d5c PR
%name
OKRARION /DY
0x224f48 | Damian
0x224184 Mark
0x224d5c | Abigail
0x1830864| Larry

~» [{ox1830864

-
o
-

[:::::]Ox1830884
[:::::]Ox1830894
[:::::]Ox1830918

= Use the registry key
to locate old data

= Copy data to new
refaddr key

= Delete the old key

» Update the registry

28
Copyright © 2006 David A. Golden

CPAN

Image source: Bill Odom Copyright © 2006 David A. Golden

Two CPAN modules to consider and several to (probably) avoid

v = Object::InsideOut

— Currently the most flexible, robust implementation of inside-out objects
— But, black-box inheritance handled via delegation (including multiple inheritance)

v ®m Class::InsideOut (disclaimer: | wrote this one)

— A safe, simple, minimalist approach

— Manages inside-out complexity but leaves all other details to the user
— Supports black-box inheritance directly

2 = Class::Std

— Rich support for class hierarchies and overloading

— But, not yet thread-safe

— Hash-based with memory-address, but not in a way that allows black-box inheritance
X = All of these have flaws or limitations:

Base: :Class Lexical - :Attributes
Class: :BuildMethods Object::LocalVars

Class: :MakeMethods: :Templates: : InsideOut

1? = ... but coming "soon" in Perl 5.10: Hash: :Util: :FieldHash

30
Copyright © 2006 David A. Golden

Questions?

31
Copyright © 2006 David A. Golden

Bonus Slides

Image source: Michal Kosmulski Copyright © 2006 David A. Golden

File::Marker with thread safety, part one

use
use

base "I10::File";
Scalar::Util gw(refaddr weaken);

my %MARKS = ();
my %REGISTRY = ();

sub

sub

new {

my $class = shift;

my $self = 10::File->new();
bless $self, $class;

weaken($REGISTRY{ refaddr $self } = $self);

$self->open(@_) if @ ;
return $self;

DESTROY {

my $self = shift;

delete $MARKS{ refaddr $self };
delete $REGISTRY{ refaddr $self };

33
Copyright © 2006 David A. Golden

File::Marker with thread safety, part two

sub CLONE {

for my $old _i1d (keys %REGISTRY) {

look under old_id to find the new, cloned reference

my $object
my $new_id

$REGISTRY{ $old id };
refaddr $object;

relocate data

$MARKS{ $new_id } = $MARKS{ $old id };

delete $MARKS{ $old id };

update the weak reference to the new, cloned object

weaken ($REGISTRY{ $new_id } = $object);

delete $REGISTRY{ $old_id };

}

return;

34
Copyright © 2006 David A. Golden

Inside-out CPAN module comparison table

Module Storage Index CLONE? Serializes? Other Notes
Object::InsideOut Array or Array: Integers Yes Custom » black-box inheritance using
(1.27) Hash Hash: Cached dump() delegation pattern

refaddr $self Storable = Custom :attribute handling
hooks
= mod_perl safe
= Good thread support
Class::InsideOut Hash refaddr $self Yes Storable = Simple, minimalist approach
1.00 hooks
() = Supports direct black-box
inheritance
= mod_perl safe
Class::Std Hash refaddr $self No Storable = Custom :attribute handling;
(0.0.8) hooks with
Class::Std:: = mod_perl safe
Storable = No black-box inheritance

support

= Rich class hierarchy support

35
Copyright © 2006 David A. Golden

Inside-out CPAN module comparison table (continued)

Module Storage Index CLONE? Serializes? Other Notes
Base::Class Hash of "$self" No Dumper to = Lexical storage in
(0.12) Hashes STDERR Base::Class
'Flyweight' onl
(Flyweight) y = Autogenerates all
No Storable properties/accessors via
support AUTOLOAD
Class::BuildMethods Hash of refaddr $self No Custom = Lexical storage in
(0.112) Hashes dump() Class::BuildMethods, not the
(‘'Flyweight") NG Storabl class that uses it; provides
0 Storable accessors for use in code
support
Class::MakeMethods | Hash "$self" No No = Part of a complex class

::Template::InsideOut
(1.01)

generator system, steep
learning curve

36
Copyright © 2006 David A. Golden

Inside-out CPAN module comparison table (continued)

Module Storage Index CLONE? Serializes? Other Notes
Lexical::Attributes Hash refaddr $self No No = Source filters for Perl-6-like
(1.4) syntax
Object::LocalVvars Package refaddr $self Yes No = Custom :attribute handling
(0.16) global hash

= mod_perl safe

= Wraps methods to locally
alias $self and properties

= Highly experimental

37
Copyright © 2006 David A. Golden

Some CPAN Modules which use the inside-out technique

s Data: :Postponed
— Delay the evaluation of expressions to allow post facto changes to input variables

m File::Marker (from this tutorial)
— Set and jump between named position markers on a filehandle

m List::Cycle
— Objects for cycling through a list of values

= Symbol::Glob
— Remove items from the symbol table, painlessly

38
Copyright © 2006 David A. Golden

References for further study

= Books by Damian Conway
— Object Oriented Perl. Manning Publications. 2000
— Perl Best Practices. O'Reilly Media. 2005

= Perlmonks — see my scratchpad for a full list: <http://perlmonks.org/index.pl?node_id=360998>

— Abigail-1l. "Re: Where/When is OO useful?". July 1, 2002
<http://perimonks.org/index.pl?node_id=178518>

— Abigail-1l. "Re: Tutorial: Introduction to Object-Oriented Programming". December 11, 2002
<http://perimonks.org/index.pl?node_id=219131>

— demerphg. "Yet Another Perl Object Model (Inside Out Objects)". December 14, 2002
<http://perimonks.org/index.pl?node_id=219924>

— xdg. "Threads and fork and CLONE, oh my!". August 11, 2005
<http://perlmonks.org/index.pl?node_id=483162>

— jdhedden. "Anti-inside-out-object-ism". December 9, 2005
<http://perimonks.org/index.pl?node_id=515650>

» Perl documentation (aka "perldoc") — also at <http://perldoc.perl.org>
— perlmod
— perlfork

39
Copyright © 2006 David A. Golden

