
Copyright © 2006 David A. Golden

Eversion 101
An Introduction to Inside-Out Objects

David Golden
dagolden@cpan.org

June 26, 2006
YAPC::NA

Image source: Michal Kosmulski

1
Copyright © 2006 David A. Golden

An introduction to the inside-out technique

Inside-out objects first presented by Dutch Perl hacker Abigail in 2002
– Spring 2002 – First mention at Amsterdam.pm,
– June 28, 2002 – YAPC NA "Two alternative ways of doing OO"
– July 1, 2002 – First mention on Perlmonks

Gained recent attention (notoriety?) as a recommended best practice with the
publication of Damian Conway's Perl Best Practices

Offer some interesting advantages... but at the cost of substantial complexity
– Big question: Do the benefits outweight the complexity?

Agenda for this tutorial:
– Teach the basics
– Describe the complexity
– Let you decide

2
Copyright © 2006 David A. Golden

Eversion 101 Lesson Plan: Five C's

Image sources: Michal Kosmulski,Bill Odom

001 Concepts

010 Choices

011 Code

100 Complexity

101 CPAN

Copyright © 2006 David A. Golden

001 Concepts

Image source: Michal Kosmulski

4
Copyright © 2006 David A. Golden

Three ideas at the core of this tutorial

TIMTOWTDI: Everything else is combinations and variations

1. Encapsulation using lexical closure

2. Objects as indices versus objects as containers

3. Memory addresses as unique identifiers

5
Copyright © 2006 David A. Golden

'Classic' Perl objects reference a data structure of properties

Image source: Michal Kosmulski

serial_no

rank

name

3210

Hash-based object

Array-based object

Object 1

Object 2

$obj = bless {}, "Some::Class";

$obj = bless [], "Some::Class";

6
Copyright © 2006 David A. Golden

Complaint #1 for classic objects: No enforced encapsulation

Frequent confusion describing the encapsulation problem
– Not about hiding data, algorithms or implementation choices
– It is about minimizing coupling with the code that uses the object

The real question: Culture versus control?
– Usually a matter of strong personal opinions
– Advisory encapsulation: 'double yellow lines'
– Enforced encapsulation: 'Jersey barriers'

The underlying challenge: Tight coupling of superclasses and subclasses
– Type of reference for data storage, e.g. hashes, array, scalars, etc.
– Names of keys for hashes
– 'Strong' encapsulation isn't even an option

7
Copyright © 2006 David A. Golden

Complaint #2: Hash key typos (and proliferating accessors)

A typo in the name of a property creates a bug, not an error1

– Code runs fine but results aren't as expected
$self->{naem} = 'James';

print $self->{name}; # What happened?

Accessors to the rescue (?!)
– Runtime error where the typo occurs
– Every property access gains function call overhead
$self->naem('James'); # Runtime error here
print $self->name();

My view: accessor proliferation for typo safety is probably not best practice
– Private need for typo safety shouldn't drive public interface design
– Couples implementation and interface

1 Locked hashes are another solution as of Perl 5.8

8
Copyright © 2006 David A. Golden

Eureka! We can enforce encapsulation with lexical closure

Class properties always did this
package Some::Class;

my $counter;
sub inc_counter {
my $self = shift;
$counter++;

}

Damian Conway's flyweight pattern2

my @objects;

sub new {
my $class = shift;
my $id = scalar @objects;
$objects[$id] = {};
return bless \$id, $class;

}

sub get_name {
my $self = shift;
return $objects[$$self]{name};

}

serial_no

rank

name

inc_counter

3210

my @objects

1

my $counter

new

get_name

Some::Class

2 A brief version of this was introduced in Advanced Perl Programming, 1st edition as ObjectTemplate

9
Copyright © 2006 David A. Golden

'Inside-Out' objects use an index into lexicals for each property

Image source: Michal Kosmulski

Object 4

Object 3

Object 2

Object 1

Object 4

Object 3

Object 2

Object 1

Object 4

Object 3

Object 2

Object 1

my %name

my %rank

my %serial_no

new

get_name

do_stuff

Correct:
$name{ $$self };

Compiler error:
$naem{ $$self };

Lexical properties
give compile-time

typo checking
under strict!

Some::Class

10
Copyright © 2006 David A. Golden

Review: 'Classic' versus 'Inside-Out'

Classic: Objects as containers
– Object is a reference to a data structure of properties
– No enforced encapsulation
– Hash-key typo problem

Inside-Out: Objects as indices
– Object is an index into a lexical data structure for each property
– Enforced encapsulation using lexical closure
– Compile-time typo protection

Image source: Michal Kosmulski

serial_no

rank

nameObject 1

Object 4

Object 3

Object 2

Object 1

my %name

Object 2

Object 2
Index

Copyright © 2006 David A. Golden

010 Choices

Image source: Michal Kosmulski

12
Copyright © 2006 David A. Golden

What data structure to use for inside-out properties?

Object 2

Object 2
Index ?

13
Copyright © 2006 David A. Golden

What data structure to use for inside-out properties?

Array
– Fast access
– Index limited to sequential integers
– Needs DESTROY to recycle indices to prevent runaway growth of property arrays

Hash
– Slow(er) access
– Any string as index
– Uses much more memory (particularly if keys are long)
– Needs DESTROY to free property memory to avoid leakage

Object 4

Object 3

Object 2

Object 1

my %name

Object 2

Object 2
Index

3210

my @name
How to decide?

14
Copyright © 2006 David A. Golden

Sequential number, stored in a blessed scalar
– Tight coupling – subclasses must also use a blessed scalar
– Subclass must use an index provided by the superclass
– Unless made read-only, objects can masquerade as other objects, whether references

to them exist or not!
$$self = $$self + 1

A unique, hard-to-guess number, stored in a blessed scalar (e.g. with Data::UUID)
– Again, tight coupling – subclasses must also use a blessed scalar

What index? (And stored how?)

8c2d4691

my %rank

Object 2

8c2d4691

3210
Object 1

1

my @name

15
Copyright © 2006 David A. Golden

An alternative: use the memory address as a unique identifier

Unique and consistent for the life of the object
– Except under threads (needs a CLONE method)

Several ways to get the memory address; only refaddr()is safe3

$property{ refaddr $self }

Otherwise, overloading of stringification or numification can give unexpected results
$property{ "$self" }

$property{ $self } # like "$self"
$property{ 0+$self }

0x224e40

my %serial_no

Object 3

?
0x224e40

3 Available in Scalar::Util

16
Copyright © 2006 David A. Golden

Using the memory address directly allows 'black-box' inheritance

When used directly as refaddr $self, the type of blessed reference no longer matters
– Subclasses don't need to know or care what the superclass is using as a data type
– Downside is slight overhead of refaddr $self for each access

Black-box inheritance4 – using a superclass object as the reference to bless
– a.k.a. 'foreign inheritance' or 'opaque inheritance'
– An alternative to facade/delegator/adaptor patterns and some uses of tied variables
– Superclass doesn't even have to be an inside-out object

use base 'Super::Class';

sub new {
my $class = shift;
my $self = Super::Class->new(@_);
bless $self, $class;
return $self;

}

There is still a problem for multiple inheritance of different base object types

4 Thanks to Boston.pm for name brainstorming

17
Copyright © 2006 David A. Golden

These choices give four types of inside-out objects

1. Array-based properties, with sequential ID's stored in a blessed scalar
– Fast and uses less memory
– Insecure unless index is made read-only
– Requires index recycling
– Subclasses must also use a blessed scalar – no black-box inheritance

2. Hash-based properties, with a unique, hard-to-guess number stored in a blessed scalar
– Slow and uses more memory
– Robust, even under threads
– Subclasses must also use a blessed scalar – no black-box inheritance

3. Hash-based properties, with the memory address stored in a blessed scalar
– Subclasses must also use a blessed scalar – no black-box inheritance
– Combines the worst of (2) and (4) for a slight speed increase

4. Hash-based properties, with the memory address used directly
– Slow and uses more memory
– Black-box inheritance possible
– Not thread-safe unless using a CLONE method

?

Copyright © 2006 David A. Golden

011 Code

Image source: Michal Kosmulski

19
Copyright © 2006 David A. Golden

File::Marker: a simple inside-out objects with black-box inheritance

Useable directly as a filehandle (IO::File) without tying
$fm = File::Marker->new($filename);
$line = <$fm>;

Set named markers for the current location in an opened file
$fm->set_marker($mark_name);

Jump to the location indicated by a marker
$fm->goto_marker($mark_name);

Let users jump back to the last jump point with a special key-word
$fm->goto_marker("LAST");

Clear markers when opening a file
$fm->open($another_file); # clear all markers

Key Features

20
Copyright © 2006 David A. Golden

File::Marker constructor

use base 'IO::File';
use Scalar::Util qw(refaddr);

my %MARKS = ();

sub new {
my $class = shift;
my $self = IO::File->new();
bless $self, $class;
$self->open(@_) if @_;
return $self;

}

sub open {
my $self = shift;
$MARKS{ refaddr $self } = {};
$self->SUPER::open(@_);
$MARKS{ refaddr $self }{ 'LAST' } = $self->getpos;
return 1;

}

Uses strict and warnings
Argument validation
Error handling
Extensive test coverage
Thread safety

Full version of File::Marker
available on CPAN

21
Copyright © 2006 David A. Golden

File::Marker destructor and methods

sub DESTROY {
my $self = shift;
delete $MARKS{ refaddr $self };

}

sub set_marker {
my ($self, $mark) = @_;
$MARKS{ refaddr $self }{ $mark } = $self->getpos;
return 1;

}

sub goto_marker {
my ($self, $mark) = @_;
my $old_position = $self->getpos; # save for LAST
$self->setpos($MARKS{ refaddr $self }{ $mark });
$MARKS{ refaddr $self }{ 'LAST' } = $old_position;
return 1;

}

22
Copyright © 2006 David A. Golden

Seeing it in action

use strict;
use warnings;
use File::Marker;

my $fm = File::Marker->new(
"textfile.txt"

);

print scalar <$fm>, "--\n";

$fm->set_marker("line2");

print <$fm>, "--\n";

$fm->goto_marker("line2");

print scalar <$fm>;

this is line one
this is line two
this is line three
this is line four

textfile.txtfile_marker_example.pl

this is line one
--
this is line two
this is line three
this is line four
--
this is line two

Output

Copyright © 2006 David A. Golden

Complexity

Image source: Michal Kosmulski

24
Copyright © 2006 David A. Golden

Five pitfalls

1. Not using DESTROY to free memory or reclaim indices

2. Serialization – without special precautions

3. Not using refaddr() to get a memory address

4. Not providing CLONE for thread-safety

5. Using a CPAN implementation that gets these wrong

Inherent to all
inside-out objects

Only if using
memory addresses

25
Copyright © 2006 David A. Golden

Serialization requires extra work

Programmers often assume an object reference is a data structure
Dump($object); # implicitly breaks encapsulation

OO purists might say that objects should provide a dump method
$object->dump(); # OO-style

But, what if objects are part of a larger non-OO data structure?
@list = ($obj1, $obj2, $obj3);

freeze(\@list); # What now?

Fortunately, Storable provides hooks for objects to control their serialization

STORABLE_freeze();

STORABLE_thaw();

STORABLE_attach(); # for singletons

Of Data::Dumper and clones, only Data::Dump::Streamer provides the right
kind of hooks (but doesn't easily support singleton objects... yet)

26
Copyright © 2006 David A. Golden

Use CLONE for thread-safe refaddr indices

Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists
– Called from the context of the new thread
– Works for Win32 pseudo-forks (but not for Perl 5.6)
Use a registry with weak references to track and remap old indices
– weaken provided by the XS version of Scalar::Util

0x224d5c

0x224f84

0x224f48

0x224e40

%REGISTRY

0x224e40

0x224f48

0x224f84

0x224d5c 0x224d5c

0x224f84

0x224f48

0x224e40

%REGISTRY

0x1830864

0x1830884

0x1830894

0x1830918

Original Thread New Thread

Abigail0x224d5c

Mark0x224f84

Damian0x224f48

Larry0x224e40

%name

Abigail0x224d5c

Mark0x224f84

Damian0x224f48

Larry0x224e40

%name
Use the registry key
to locate old data

27
Copyright © 2006 David A. Golden

Use CLONE for thread-safe refaddr indices

Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists
– Called from the context of the new thread
– Works for Win32 pseudo-forks (but not for Perl 5.6)
Use a registry with weak references to track and remap old indices
– weaken provided by the XS version of Scalar::Util

0x224d5c

0x224f84

0x224f48

0x224e40

%REGISTRY

0x224e40

0x224f48

0x224f84

0x224d5c 0x224d5c

0x224f84

0x224f48

0x224e40

%REGISTRY

0x1830864

0x1830884

0x1830894

0x1830918

Original Thread New Thread

Abigail0x224d5c

Mark0x224f84

Damian0x224f48

Larry0x224e40

%name

Abigail0x224d5c

Larry0x1830864

Mark0x224f84

Damian0x224f48

Larry0x224e40

%name
Use the registry key
to locate old data
Copy data to new
refaddr key
Delete the old key

28
Copyright © 2006 David A. Golden

Use CLONE for thread-safe refaddr indices

Starting with Perl 5.8, thread creation calls CLONE once per package, if it exists
– Called from the context of the new thread
– Works for Win32 pseudo-forks (but not for Perl 5.6)
Use a registry with weak references to track and remap old indices
– weaken provided by the XS version of Scalar::Util

0x224d5c

0x224f84

0x224f48

0x224e40

%REGISTRY

0x224e40

0x224f48

0x224f84

0x224d5c 0x224d5c

0x224f84

0x224f48

0x1830864

%REGISTRY

0x1830864

0x1830884

0x1830894

0x1830918

Original Thread New Thread

Abigail0x224d5c

Mark0x224f84

Damian0x224f48

Larry0x224e40

%name

Abigail0x224d5c

Larry0x1830864

Mark0x224f84

Damian0x224f48

Larry0x224e40

%name
Use the registry key
to locate old data
Copy data to new
refaddr key
Delete the old key
Update the registry

Copyright © 2006 David A. Golden

CPAN

Image source: Bill Odom

30
Copyright © 2006 David A. Golden

Two CPAN modules to consider and several to (probably) avoid

Object::InsideOut

– Currently the most flexible, robust implementation of inside-out objects
– But, black-box inheritance handled via delegation (including multiple inheritance)

Class::InsideOut (disclaimer: I wrote this one)

– A safe, simple, minimalist approach

– Manages inside-out complexity but leaves all other details to the user
– Supports black-box inheritance directly

Class::Std

– Rich support for class hierarchies and overloading

– But, not yet thread-safe

– Hash-based with memory-address, but not in a way that allows black-box inheritance

All of these have flaws or limitations:

... but coming "soon" in Perl 5.10: Hash::Util::FieldHash

?

Lexical::Attributes

Object::LocalVars

Base::Class

Class::BuildMethods

Class::MakeMethods::Templates::InsideOut

!?

31
Copyright © 2006 David A. Golden

Questions?

Copyright © 2006 David A. Golden

Bonus Slides

Image source: Michal Kosmulski

33
Copyright © 2006 David A. Golden

File::Marker with thread safety, part one

use base 'IO::File';
use Scalar::Util qw(refaddr weaken);

my %MARKS = ();
my %REGISTRY = ();

sub new {
my $class = shift;
my $self = IO::File->new();
bless $self, $class;
weaken($REGISTRY{ refaddr $self } = $self);
$self->open(@_) if @_;
return $self;

}

sub DESTROY {
my $self = shift;
delete $MARKS{ refaddr $self };
delete $REGISTRY{ refaddr $self };

}

34
Copyright © 2006 David A. Golden

File::Marker with thread safety, part two

sub CLONE {
for my $old_id (keys %REGISTRY) {

look under old_id to find the new, cloned reference
my $object = $REGISTRY{ $old_id };
my $new_id = refaddr $object;

relocate data
$MARKS{ $new_id } = $MARKS{ $old_id };
delete $MARKS{ $old_id };

update the weak reference to the new, cloned object
weaken ($REGISTRY{ $new_id } = $object);
delete $REGISTRY{ $old_id };

}
return;

}

35
Copyright © 2006 David A. Golden

Inside-out CPAN module comparison table

Simple, minimalist approach

Supports direct black-box
inheritance

mod_perl safe

Storable
hooks

Yesrefaddr $selfHashClass::InsideOut
(1.00)

Custom :attribute handling;

mod_perl safe

No black-box inheritance
support

Rich class hierarchy support

Storable
hooks with
Class::Std::
Storable

Norefaddr $selfHashClass::Std
(0.0.8)

black-box inheritance using
delegation pattern

Custom :attribute handling

mod_perl safe

Good thread support

Custom
dump()

Storable
hooks

YesArray: Integers

Hash: Cached
refaddr $self

Array or
Hash

Object::InsideOut
(1.27)

Other NotesSerializes?CLONE?IndexStorageModule

36
Copyright © 2006 David A. Golden

Inside-out CPAN module comparison table (continued)

Lexical storage in
Base::Class

Autogenerates all
properties/accessors via
AUTOLOAD

Dumper to
STDERR
only

No Storable
support

No"$self"Hash of
Hashes
('Flyweight')

Base::Class
(0.11)

Lexical storage in
Class::BuildMethods, not the
class that uses it; provides
accessors for use in code

Custom
dump()

No Storable
support

Norefaddr $selfHash of
Hashes
('Flyweight')

Class::BuildMethods
(0.11)

Part of a complex class
generator system; steep
learning curve

NoNo"$self"HashClass::MakeMethods
::Template::InsideOut
(1.01)

Other NotesSerializes?CLONE?IndexStorageModule

37
Copyright © 2006 David A. Golden

Inside-out CPAN module comparison table (continued)

Source filters for Perl-6-like
syntax

NoNorefaddr $selfHashLexical::Attributes
(1.4)

Custom :attribute handling

mod_perl safe

Wraps methods to locally
alias $self and properties

Highly experimental

NoYesrefaddr $selfPackage
global hash

Object::LocalVars
(0.16)

Other NotesSerializes?CLONE?IndexStorageModule

38
Copyright © 2006 David A. Golden

Some CPAN Modules which use the inside-out technique

Data::Postponed
– Delay the evaluation of expressions to allow post facto changes to input variables

File::Marker (from this tutorial)
– Set and jump between named position markers on a filehandle

List::Cycle
– Objects for cycling through a list of values

Symbol::Glob
– Remove items from the symbol table, painlessly

39
Copyright © 2006 David A. Golden

References for further study

Books by Damian Conway
– Object Oriented Perl. Manning Publications. 2000
– Perl Best Practices. O'Reilly Media. 2005

Perlmonks – see my scratchpad for a full list: <http://perlmonks.org/index.pl?node_id=360998>
– Abigail-II. "Re: Where/When is OO useful?". July 1, 2002

<http://perlmonks.org/index.pl?node_id=178518>
– Abigail-II. "Re: Tutorial: Introduction to Object-Oriented Programming". December 11, 2002

<http://perlmonks.org/index.pl?node_id=219131>
– demerphq. "Yet Another Perl Object Model (Inside Out Objects)". December 14, 2002

<http://perlmonks.org/index.pl?node_id=219924>
– xdg. "Threads and fork and CLONE, oh my!". August 11, 2005

<http://perlmonks.org/index.pl?node_id=483162>
– jdhedden. "Anti-inside-out-object-ism". December 9, 2005

<http://perlmonks.org/index.pl?node_id=515650>

Perl documentation (aka "perldoc") – also at <http://perldoc.perl.org>
– perlmod
– perlfork

